Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 33

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on criticality safety control of fuel debris for validation of methodology applied to the safety regulation

Suyama, Kenya; Ueki, Taro; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai; Yamane, Yuichi; Izawa, Kazuhiko; Nagaya, Yasunobu; Kikuchi, Takeo; et al.

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 6 Pages, 2023/10

To remove and store safely the fuel debris generated by the severe accident of the Fukushima Daiichi Nuclear Power Station in 2011 is one of the most important and challenging topics for decommissioning of the damaged reactors in Fukushima. To validate the adopted method for the evaluation of criticality safety control of the fuel debris through comparison with the experimental data obtained by the criticality experiments, the Nuclear Regulation Authority (NRA) of Japan funds a research and development project which was entrusted to the Nuclear Safety Research Center (NSRC) of Japan Atomic Energy Agency (JAEA) from 2014. In this project, JAEA has been conducting such activities as i) comprehensive computation of the criticality characteristics of the fuel debris and making database (criticality map of the fuel debris), ii) development of new continuous energy Monte Carlo code, iii) evaluation of criticality accident and iv) modification of the critical assembly STACY for the experiments for validation of criticality safety control methodology. After the last ICNC2019, the project has the substantial progress in the modification of STACY which will start officially operation from May 2024 and the development of the Monte Carlo Code "Solomon" suitable for the criticality calculation for materials having spatially random distribution complies with the power spectrum. We present the whole picture of this research and development project and status of each technical topics in the session.

Journal Articles

Study on the basic core analysis of the new STACY

Gunji, Satoshi; Yoshikawa, Tomoki; Araki, Shohei; Izawa, Kazuhiko; Suyama, Kenya

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 8 Pages, 2023/10

Since the compositions and properties of the fuel debris are uncertain, critical experiments are required to validate calculation codes and nuclear data used for the safety evaluation. For this purpose, JAEA has been modifying a critical assembly called "STACY". The first criticality of the new STACY is scheduled for spring 2024. This paper reports the consideration results of the core configurations of the new STACY at the first criticality. We prepared two sets of gird plates with different neutron moderation conditions (their intervals are 1.50 cm and 1.27 cm). However, there is a limitation on the number of available UO$$_{2}$$ fuel rods. In addition, we would like to set the critical water heights for the first criticality at around 95 cm. This is to avoid the reactive effect of the aluminum alloy middle grid plates (Approx. 98 cm high). The core configurations for the first criticality satisfying these conditions were constructed by computational analysis. A square core configuration with the 1.50 cm grid plate that is close to the optimum moderation condition needs 261 fuel rods to reach criticality. As to the 1.27 cm grid plate, we considered two core configurations with 1.80 cm intervals by using a checkerboard arrangement. One of them has two regions core configuration with 1.27 and 1.80 cm intervals, and the other has only 1.80 cm intervals. They need 341 and 201 fuel rods for the criticality, respectively. This paper shows these three core configurations and their calculation models.

Journal Articles

Planning of the debris-simulated critical experiments on the new STACY

Gunji, Satoshi; Araki, Shohei; Arakaki, Yu; Izawa, Kazuhiko; Suyama, Kenya

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 9 Pages, 2023/10

JAEA has been modifying a critical assembly called STACY from a solution system to a light-water moderated heterogeneous system to validate computation results of criticality characteristics of fuel debris generated in the accident at TEPCO's Fukushima Daiichi Nuclear Power Station. To experimentally simulate the composition and characteristics of fuel debris, we will prepare several grid plates which make particular neutron moderation conditions and a number of rod-shaped concrete and stainless-steel materials. Experiments to evaluate fuel debris's criticality characteristics are scheduled using these devices and materials. This series of STACY experiments are planned to measure the reactivity of fuel debris-simulated samples, measure the critical mass of core configurations containing structural materials such as concrete and stainless steels, and the change in critical mass when their arrangement becomes non-uniform. Furthermore, two divided cores experiments are scheduled that statically simulate fuel debris falling, and also scheduled that subcriticality measurement experiments with partially different neutron moderation conditions. The experimental plans have been considered taking into account some experimental constraints. This paper shows the schedule of these experiments, as well as the computation results of the optimized core configurations and expected results for each experiment.

Journal Articles

Inter-codes and nuclear data comparison under collaboration works between IRSN and JAEA

Gunji, Satoshi; Araki, Shohei; Watanabe, Tomoaki; Fernex, F.*; Leclaire, N.*; Bardelay, A.*; Suyama, Kenya

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 9 Pages, 2023/10

Institut de radioprotection et de s$^{u}$ret$'{e}$ nucl$'{e}$aire (IRSN) and Japan Atomic Energy Agency (JAEA) have a long-standing partnership in the field of criticality safety. In this collaboration, IRSN and JAEA are planning a joint experiment using the new STACY critical assembly, modified by JAEA. In order to compare the codes (MVP3, MORET6, etc.) and nuclear data (JENDL and JEFF) used by both institutes in the planning of the STACY experiment, benchmark calculations of the Apparatus B and TCA, which are critical assemblies once owned by both institutes, benchmarks from the ICSBEP handbook and the computational model of the new STACY were performed. Including the new STACY calculation model, the calculations include several different neutron moderation conditions and critical water heights. There were slight systematic differences in the calculation results, which may have originated from the processing and/or format of the nuclear data libraries. However, it was found that the calculated results, including the new codes and the new nuclear data, are in good agreement with the experimental values. Therefore, there are no issues to use them for the design of experiments for the new STACY. Furthermore, the impact of the new TSL data included in JENDL-5 on the effective multiplication factor was investigated. Experimental validation for them will be completed by critical experiments of the new STACY by both institutes.

Journal Articles

Accumulation of gadolinium isotopes in used nuclear fuel

Suyama, Kenya; Kashima, Takao

Proceedings of International Conference on Nuclear Criticality Safety (ICNC 2015) (DVD-ROM), p.273 - 282, 2015/09

In the technical development of the criticality safety control of the fuel debris of Fukushima accident in Japan, there have been a discussion on a possibility of adopting BUC with FP. The Expert Group on Burnup Credit Criticality Safety (EGBUC) under the Working Party on Nuclear Criticality Safety (WPNCS) in OECD/NEA Nuclear Science Committee had carried out an international burnup calculation benchmark "Phase-IIIB" and "Phase-IIIC" for BWR fuel assemblies. In these benchmarks the difference of the calculation results of $$^{155}$$Gd among the participants obtained keen interests because it showed rather larger difference among the participants. Authors has been carried out additional analyses on the accumulation of the gadolinium isotopes in the used nuclear fuel during the burnup. Without cooling time, the assembly-averaged amount of $$^{155}$$Gd against the burnup value depends on the burnout property of gadolinium in the burnable poison rods. However, after few year cooling time, $$^{155}$$Gd increase drastically by the decay of $$^{155}$$Eu. In this case, the amount of gadolinium isotopes in the burnable poison rods has less importance. It means that the adopted parameters and data concerning the $$^{155}$$Eu generation have much more importance than the burnup treatment of the burnable poison rods for better prediction of $$^{155}$$Gd.

Journal Articles

Outline of simulation code fact for analysis of ventilation system on criticality accident

Tsubata, Yasuhiro; Tashiro, Shinsuke; Koike, Tadao; Abe, Hitoshi*; Watanabe, Koji; Uchiyama, Gunzo

Transactions of the American Nuclear Society, 87, p.60 - 61, 2002/11

no abstracts in English

JAEA Reports

Proceedings of the 5th NUCEF Seminar; February 27, 2001, JAERI, Tokai, Japan

5th NUCEF Seminar Working Group

JAERI-Conf 2001-015, 92 Pages, 2001/12

JAERI-Conf-2001-015.pdf:13.1MB

no abstracts in English

JAEA Reports

Criticality safety evaluation in Tokai reprocessing plant

Shirai, Nobutoshi; ; ; Shirozu, Hidetomo; Sudo, Toshiyuki; Hayashi, Shinichiro;

JNC TN8410 2000-006, 116 Pages, 2000/04

JNC-TN8410-2000-006.pdf:2.77MB

Criticality limits for equipments in Tokai Reprocessing Plant which handle fissile material solution and are under shape and dimension control were reevaluated based on the guideline No.10 "Criticality safety of single unit" in the regulatory guide for reprocessing plant safety. This report presents criticality safety evaluation of each equipment as single unit. Criticality safety of multiple units in a cell or a room was also evaluated. The evaluated equipments were ones in dissolution, separation, purification, denitration, Pu product storage, and Pu conversion processes. As a result, it was reconfirmed that the equipments were safe enough from a view point of criticality safety of single unit and multiple units.

JAEA Reports

Examination of safety design guideline; Safety objective and elimination of re-criticality issues

; ; *;

JNC TN9400 2000-043, 23 Pages, 2000/03

JNC-TN9400-2000-043.pdf:1.1MB

ln the feasibility study on commercialized fast breeder reactor (FBR) cycle systems conducted in JNC, it is required for candidate FBR plants that the level of safety should be enhanced so as to assure: (1)Comparative or superior safety level to that of light water reactors (LWRs), and (2)releaf of the public from anxiety about potential nuclear hazard. Adopting Passive safety characteristics is one of the measures. To attain the above safety objective, we considered implication of the basic safety principles for nuclear power plants that were created by the international nuclear safety advisory group of IAEA. The way to relieve from the anxiety was also taken into account. Then a definite safety objective was set from the standpoint of prevention of core disruptive accident (CDA). Furthermore, as a definite safety goal relating to reactor coresafety, elimination of re-criticality issues under CDA was set by considering characteristics of FBR in comparison with those of LWR. To examine measures for elimination of re-criticality issues, we developed a quick method to estimate possibility of re-criticality under CDA, by drawing a map about criticality characteristics under CDA in various degraded cores. Then hopeful measures were proposed for elimination of re-criticality issues in sodium-cooled FBR with mixed-oxide fuel. Molten fuel discharge behavior of their measures was preliminarily analyzed. We concluded that discharge capability of "a subassembly with an internal duct" was effective, and that "partial removal of axial blanket" was also effective as one of the measures though it has small effect on core performance.

JAEA Reports

None

JNC TJ1400 99-004, 110 Pages, 1999/02

JNC-TJ1400-99-004.pdf:2.42MB

no abstracts in English

JAEA Reports

None

; ; ; Mikami, Satoshi; ; ; Ebana, Minoru

PNC TN8520 96-001, 2536 Pages, 1996/03

PNC-TN8520-96-001.pdf:62.42MB

Journal Articles

The nuclear fuel cycle safety engineering research facility (NUCEF) in JAERI-Tokai

Mineo, Hideaki; Yanagisawa, Hiroshi;

Hoshasen Kagaku, 0(60), p.47 - 50, 1995/00

no abstracts in English

Journal Articles

Exponential experiments of PWR spent fuel assemblies for acquiring subcriticality benchmarks usable in burnup credit evaluations

Suzaki, Takenori; Kurosawa, Masayoshi; Hirose, Hideyuki; Yamamoto, Toshihiro; Nakajima, Ken; ; *; *

ICNC 95: 5th Int. Conf. on Nuclear Criticality Safety, Vol. I, 0, p.1B.11 - 1B.18, 1995/00

no abstracts in English

JAEA Reports

Journal Articles

Nearing completion of NUCEF construction; Present status and prospects of NUCEF project

Tsujino, Takeshi; Naito, Yoshitaka; Maeda, Mitsuru; ; Hoshi, Michio; Izawa, Naoki; Takeshita, Isao; ; Okazaki, Shuji; Dojiri, Shigeru

Genshiryoku Kogyo, 40(5), p.9 - 59, 1994/00

no abstracts in English

Journal Articles

Safety research programs in NUCEF for fuel cycle back-end facilities

Tsujino, Takeshi; Takeshita, Isao; Izawa, Naoki;

Topical meeting,Safety of the Nuclear Fuel Cycle, 0, p.124 - 137, 1994/00

no abstracts in English

Journal Articles

NUCEF project in the recycling of nuclear fuels of Japan

Tsujino, Takeshi

Dai-30-Kai Genshi Doryoku Kenkyukai Nenkai Hokokusho, p.1 - 21, 1993/08

no abstracts in English

Journal Articles

Present status of nuclear criticality safety research; highlights of International Conference on Nuclear Criticality Safety(ICNC-91)

Nishina, Kojiro*; Yamane, Yoshihiro*; Kobayashi, Iwao; Tachimori, Shoichi; ; Miyoshi, Yoshinori; Okuno, Hiroshi; Nakajima, Ken; Mitake, Susumu*; *; et al.

Nihon Genshiryoku Gakkai-Shi, 34(4), p.311 - 319, 1992/04

 Times Cited Count:0 Percentile:0.49(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

None

PNC TN1410 92-031, 170 Pages, 1992/01

PNC-TN1410-92-031.pdf:5.77MB

no abstracts in English

33 (Records 1-20 displayed on this page)